在交流電機控制領域中,數位控制回路的設計向來是個具挑戰性的議題。 隨著技術的進步,對於高效且穩定的馬達控制系統的需求越來越高,這也促使我們需要更深入地研究並應用經典的控制理論,以滿足現代應用的要求。
數位控制系統是實現交流電機控制技術的主流方式,而數位系統先天就不可避免的會產生延遲效應,如運算延遲、取樣延遲、輸出延遲等,而延遲必然會減少系統的穩定度,若在控制回路設計階段,未將延遲納入考慮,則設計的系統頻寬與穩定度將與系統的實際值有相當大的出入,因此本書會從經典控制理論中的頻寬(Bandwidth)、相位裕度(Phase margin)與增益裕度(Gain margin)出發,並考慮數位系統的延遲效應來設計交流電機控制回路(電流、速度、位置回路),設計完成的模擬系統將非常接近真實馬達控制系統,建構接近真實物理系統的模擬工具,不僅可大幅降低研發與測試成本,也可作為建立自主智慧財產權的有效載體,提升自主化創新能力與核心競爭力。
數位控制系統是實現交流電機控制技術的主流方式,而數位系統先天就不可避免的會產生延遲效應,如運算延遲、取樣延遲、輸出延遲等,而延遲必然會減少系統的穩定度,若在控制回路設計階段,未將延遲納入考慮,則設計的系統頻寬與穩定度將與系統的實際值有相當大的出入,因此本書會從經典控制理論中的頻寬(Bandwidth)、相位裕度(Phase margin)與增益裕度(Gain margin)出發,並考慮數位系統的延遲效應來設計交流電機控制回路(電流、速度、位置回路),設計完成的模擬系統將非常接近真實馬達控制系統,建構接近真實物理系統的模擬工具,不僅可大幅降低研發與測試成本,也可作為建立自主智慧財產權的有效載體,提升自主化創新能力與核心競爭力。