本書主要分為兩個部分:機器學習理論與實踐分析。內容以Weka為工具,並透過易於理解的方式帶讀者們學習「機器學習」所需的分析方法,同時結合實踐利用案例一步一步說明使用方法,以及工具的掌握,利用無需撰寫程式的方式,讓你以最輕鬆的方式建立機器學習的基礎。
目錄:
第 1 章 Weka的安裝與主要功能
第 2 章 利用Excel與Weka的簡單操作──機器學習與決策樹
第 3 章 檔案形式與屬性類型的轉換
第 4 章 屬性的選擇
第 5 章 分類分析
第 6 章 集群分析
第 7 章 關聯規則分析
第 8 章 時間序列分析
第 9 章 「實踐篇」:使用Weka的各種例題
第 10 章 貝氏網路模型
第 11 章 Weka API
目錄:
第 1 章 Weka的安裝與主要功能
第 2 章 利用Excel與Weka的簡單操作──機器學習與決策樹
第 3 章 檔案形式與屬性類型的轉換
第 4 章 屬性的選擇
第 5 章 分類分析
第 6 章 集群分析
第 7 章 關聯規則分析
第 8 章 時間序列分析
第 9 章 「實踐篇」:使用Weka的各種例題
第 10 章 貝氏網路模型
第 11 章 Weka API