AI時代Math元年-用Python全精通程式設計
本書旨在幫助零基礎的讀者學習Python程式設計。涵蓋了Anaconda和JupyterLab的安裝與使用,並深入介紹Python的基本語法、資料型態、常見運算、控制結構、函式以及物件導向程式設計,讓讀者能夠掌握Python的核心概念。在資料視覺化方面,本書探討了二維和三維視覺化技術,並使用Seaborn進行資料視覺化,幫助讀者將資料轉化為可視化的圖形。此外,書中詳細介紹了NumPy的使用,包括索引和切片、常見運算、陣列規整、線性代數以及愛因斯坦求和約定,這些都是進行資料分析的重要工具。
Pandas部分則著重於快速視覺化、索引和切片、時間序列資料的處理及資料規整,讓讀者能夠有效管理和分析資料。在進階視覺化和運算方面,本書介紹了Plotly的統計視覺化、SymPy的符號運算、SciPy的數學運算及Statsmodels的統計模型,這些工具能夠幫助讀者進行更複雜的資料分析。在機器學習的部分,書中探討了Scikit-Learn的應用,包括資料預處理、回歸、降維、分類和聚類等技術,讓讀者了解如何利用機器學習解決實際問題。
最後,本書還介紹了如何使用Streamlit來架設應用程式,特別是機器學習相關的Apps。整體而言,本書以實作為主,搭配Jupyter Notebook,引導讀者在動手練習中學習Python程式設計、資料分析和機器學習的基礎知識,並以圖形和口語化的方式解釋背後的數學思想。
本書旨在幫助零基礎的讀者學習Python程式設計。涵蓋了Anaconda和JupyterLab的安裝與使用,並深入介紹Python的基本語法、資料型態、常見運算、控制結構、函式以及物件導向程式設計,讓讀者能夠掌握Python的核心概念。在資料視覺化方面,本書探討了二維和三維視覺化技術,並使用Seaborn進行資料視覺化,幫助讀者將資料轉化為可視化的圖形。此外,書中詳細介紹了NumPy的使用,包括索引和切片、常見運算、陣列規整、線性代數以及愛因斯坦求和約定,這些都是進行資料分析的重要工具。
Pandas部分則著重於快速視覺化、索引和切片、時間序列資料的處理及資料規整,讓讀者能夠有效管理和分析資料。在進階視覺化和運算方面,本書介紹了Plotly的統計視覺化、SymPy的符號運算、SciPy的數學運算及Statsmodels的統計模型,這些工具能夠幫助讀者進行更複雜的資料分析。在機器學習的部分,書中探討了Scikit-Learn的應用,包括資料預處理、回歸、降維、分類和聚類等技術,讓讀者了解如何利用機器學習解決實際問題。
最後,本書還介紹了如何使用Streamlit來架設應用程式,特別是機器學習相關的Apps。整體而言,本書以實作為主,搭配Jupyter Notebook,引導讀者在動手練習中學習Python程式設計、資料分析和機器學習的基礎知識,並以圖形和口語化的方式解釋背後的數學思想。